
APS runControl Library

C. Saunders, M. Borland, R. Soliday

Advanced Photon Source

April 29, 2005

Original version of documentation written Oct. 25, 1995

1 Introduction

This document serves as a User’s Manual and Reference for the runControl library.

This library is designed to be used by closed-loop EPICS control applications which are gener-
ally run in the background on the controls workstations. It permits an application to ”register”
itself with an EPICS record, thereby preventing additional instances of the same application from
being run. In addition, the executing application may in turn be suspended or aborted via an
MEDM control screen or other standard channel access client.

The process is roughly as follows:

This library is ”cooperative” in nature, in that each application must select and use a unique
application description string, and act on the library return codes properly.

1



2 Sample Application

The runControl library is a set of three C functions for communicating with an EPICS runcontrol
record. Here is a simple program depicting proper use of the library.

#include <stdio.h>

#include <string.h>

#include <cadef.h>

#include <libruncontrol.h>

int main(int argc, char *argv[]) {

char pv[255];

char handle[255];

int status;

RUNCONTROL_INFO rcInfo;

if (argc < 2) {

fprintf(stderr,"usage: %s <description-string>\n\n",argv[0]);

return(1);

}

/* NULL means the next available runcontrol record should be used.

argv[1] is the unique application description string.

A ping timeout of 2000 milliseconds will be used. The timeout is

used by the IOC to check if the client has stopped responding.

The handle is used for subsequent calls.

rcInfo is a RUNCONTROL_INFO structure.

A pend IO timeout of 10 seconds will be used. This timeout is

used by the client to check if the IOC has stopped responding.

*/

sprintf(pv, ‘‘oag:ControlLawRC’’);

status = runControlInit(pv, argv[1], 2000.0, handle, &rcInfo, 10);

if (status != RUNCONTROL_OK) {

fprintf(stderr,"ERROR initializing run control\n");

return(1);

}

while (1) {

/* Note: application may suspend inside the runControlPing() call */

status = runControlPing(handle, &rcInfo);

switch (status) {

case RUNCONTROL_ABORT:

fprintf(stderr,"Application aborted\n");

return(1);

case RUNCONTROL_TIMEOUT:

fprintf(stderr,"Application timed out\n");

return(1);

case RUNCONTROL_OK:

/* do your application work here, but don’t take more than 2000 ms */

2



sleep(1);

/* Send some useful status message and set alarm severity if you wish. */

status = runControlLogMessage(handle, "informative message", NO_ALARM, &rcInfo);

if (status != RUNCONTROL_OK) {

fprintf(stderr,"Unable to write status message and alarm severity\n");

return(1);

}

break;

case RUNCONTROL_ERROR:

fprintf(stderr,"Communications error with runcontrol record\n");

return(1);

default:

fprintf(stderr,"Unknown error code\n");

return(1);

}

}

/* When loop above is done, exit gracefully. May have to do this as part

of a kill signal handler if that is how you stop your application.

*/

status = runControlExit(handle, &rcInfo);

if (status != RUNCONTROL_OK) {

fprintf(stderr,"ERROR during exit run control\n");

return(1);

}

return(0);

}

3 Compiling

The runcontrol library source code is distributed with the SDDS Epics ToolKit source code. Ex-
amples of how to compile and link code with the runcontrol library can be viewed by examining
the makefiles.

4 Library Reference

#include “libruncontrol.h”

runControlInit

int runControlInit(char *pv, char *desc, float timeout, char *handle, RUNCONTROL INFO *rcInfo,
double pendIOtime);

Grab control of the specified EPICS runcontrol record, and load it with various application in-
formation, such as process-id, hostname, username, and start time. A specific record may be given
via the pv argument, or NULL may be given and the next free runcontrol record will be found for
you.

3



• pv - ptr to null terminated string containing pv name, not to exceed 39 characters, or NULL
if you want library to find next free runcontrol record for you.

• desc - ptr to null terminated string (¡= 39 chars) which identifies your application.

• timeout - timeout interval for ping in milliseconds. Your application must call runCon-
trolPing periodically within this interval, or the runcontrol record will timeout, and your
application will have to exit.

• handle - ptr to zero length, preallocated string of 255 bytes. Function will copy in an identifier
which is to be used in the other library calls.

• rcInfo - ptr to RUNCONTROL INFO which is used internally by runcontrol.

• pendIOtime - timeout interval used by client incase IOC is unresponsive.

Returns:

• RUNCONTROL OK - application is registered, proceed

• RUNCONTROL DENIED - another application (or application instance) is using the
same runcontrol record, or has the same description string.

• RUNCONTROL ERROR - unable to communicate with runcontrol record

runControlPing

int runControlPing(char *handle, RUNCONTROL INFO *rcInfo);

Notifies runcontrol record that you application is still alive. Also provides a means for runcon-
trol record to suspend you, or request that you abort. The return codes from this call must be
checked and acted on properly.

• handle - ptr to string initialized by runControlInit() call.

• rcInfo - ptr to RUNCONTROL INFO which is used internally by runcontrol.

Returns:

• RUNCONTROL OK - all is well, continue

• RUNCONTROL ABORT - your application should clean up and exit

• RUNCONTROL TIMEOUT - your application didn’t ping the record within the timeout
interval and should clean up and exit.

• RUNCONTROL ERROR - unable to communicate with record, you should attempt an-
other runControlInit(), or exit.

runControlExit

int runControlExit(char *handle, RUNCONTROL INFO *rcInfo);

Release control of the runcontrol record.

4



• handle - ptr to string initialized by runControlInit() call.

• rcInfo - ptr to RUNCONTROL INFO which is used internally by runcontrol.

Returns:

• RUNCONTROL OK - all is well

• RUNCONTROL ERROR - unable to communicate with record

runControlLogMessage

int runControlLogMessage(char *handle, char *message, short severity, RUNCONTROL INFO
*rcInfo);

Log a message and new alarm severity to the runcontrol record. The runcontrol record will enter
given alarm state.

• handle - ptr to string initialized by runControlInit() call.

• message - ptr to null terminated string (¡= 39 chars) with status message.

• severity - NO ALARM, MINOR ALARM, MAJOR ALARM, INVALID ALARM

• rcInfo - ptr to RUNCONTROL INFO which is used internally by runcontrol.

Returns:

• RUNCONTROL OK - all is well

• RUNCONTROL ERROR - unable to communicate with record

5


